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ABSTRACT 

In this paper, a Green’s function has been derived with which a theorem is established that proves the uniqueness 

of the solution of a second order functional differential equation with periodic operator coefficients under some conditions 

on the unbounded operator. This operator has a domain and a range belonging to Hilbert's Space.  
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INTRODUCTION 

Searching for periodic solutions for differential equations is not trivial. The main reason being that there are no 

general methods which may allow to establish if a periodic solution exists for some specific system of differential 

equations or not. Different methods and concepts should be inspected to find the best option but globally many of these 

methods are related to the perturbation theory (Nayfeh, 1973). 

In applied mathematics and physics, second order differential equations or the equivalent system of two first order 

equations have a great importance (Boyce, 1986). 

Many problems in physics and engineering lead to a system of linear differential equations with periodic 

coefficients. Lyapinov and Poincaré, who investigated the stability of periodic motions which are described by nonlinear 

differential equations transformed the centroid problem into a system of linear differential equations with periodic 

coefficients (Hale, 1993). 

In the last years many results were achieved in the mathematical theory of differential equations with periodic 

coefficients, see (Benkhalti, 2004, Cabada, 2008, Huseynov, 2010, Kiguradze, 2009, Li, 2009, Nieto, 2005, Piao, 2004, 

Zhang, 2003). 

Piao (2004) investigated the existence and uniqueness of periodic and almost periodic solution of the differential 

equation with reflection of argument. The relationship between modules of forced term and solution of the equation is 

considered. 

Benkhalti and Ezzinbi (2004) studied the periodic solutions for some partial functional differential equations. 

Li and Zhang (2009) dealt with the existence of positive T - periodic solutions for the damped differential 

equation 

       tctxfxtqxtpx  ,  where p, q,  R1Lc  are T - periodic functions and  RRR ,Carf  

is T - periodic in the first variable. 
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According to Li's work, this proves that a weak repulsive singularity enables the achievement of new existence 

criteria through a basic application of Schauder's fixed point Theorem. 

Huseynov (2010) investigated nonlinear second order differential equations subject to linear impulse conditions 

and periodic boundary conditions. Sign properties of an associated Green's function are exploited to get existence results 

for positive solutions of the nonlinear boundary value problem with impulse. The results obtained yield periodic positive 

solutions of the corresponding periodic impulsive nonlinear differential equation on the whole real axis. 

Lillo (1968) indicates the extension of some of the results of Hahn (1961) for the Green's function to equations of 

the form considered by Shimanov (1963) for periodic differential difference equations. He also indicates the relation of this 

Green's function to the representation problem. 

The results of Zverkin (1963) for the case of a scalar equation where the lags are multiples of the period are 

studied. Convergence result for the series associated with Green's function is established. This result along with those Lillo 

(1966) indicate a kind of “harmonic resonance” which occur in these equations. 

Nieto (2005) obtained under suitable conditions, the Green's function to express the unique solution for a second-

order functional differential equation with periodic boundary conditions and functional dependence given by a piecewise 

constant function. This expression is given in terms of the solutions for certain associated problems. The sign of the 

solution is determined taking into account the sign of that Green's function. 

Zhang and Wang (2003) establish the existence and multiplicity of positive solutions to periodic boundary value 

problems for singular nonlinear second order ordinary differential equations. The arguments are based only upon the 

positivity of the Green's functions and the Krasnoselskii fixed point theorem. They apply their results to a problem coming 

from the theory of nonlinear elasticity. 

Cabada and Cid (2008) give a L
p
-criterium for the positiveness of the Green's function of the periodic boundary 

value problem:          TxxTxxxtax  0,0,0  with an indefinite potential a(t). Moreover, they prove that 

such Green's function is negative provided a(t) belongs to the image of a suitable periodic Ricatti type operator. 

Theoretical Frame 

Consider the second order equation: 

       tftuDMAtuDtuL

k

m

j

k
thjktp jk
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22
                                                                                        (1) 

where Akj are operators which domains belong to a Hilbert space X and their ranges to a Hilbert space Y, 

YX
YX ..,   and Akj : YY  are closed operators, Akj : YX  are bounded operators, f(t) is  - periodic  

function, hkj are constants, k = 0, 1, j = 0, …, m and h00 = h10 = 0,     .
1

,
k
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k
tjkh
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The existence of  - periodic solutions of Eq. (1) is the main question in this work. For this, we consider the 

complete orthogonal system of functions 
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 in  ,02L  where  ,02L  is Hilbert's space and we 

expand the function f(t) in a series with this system, i.e. 
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We will seek a periodic solution of (1) in the form of a Fourier series 
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into (1), we get 
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where E is the identity. 

Equating the coefficients with the same powers of the exponential functions, we get 
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- Assuming that the following condition holds: 
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which means that the spectrum of the operator pA does not contain the points of real axis 
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- and from (3) we find 
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Has a nontrivial solution X0 , then the numbers 
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equation (6) can be written in the form 
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where the resolvant operator XYRn : depends on the parameter n. By virtue of the enclosure ,YX  , we 

can consider the operator .: YYRn   
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and then subtracting from both sides of (11) the  - periodic function   ,Et  expressed in uniformly convergent 

series  - periodic functions, i.e. 
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Hence, if we require that the conditions 
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which are equivalent to 1,0,
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converges absolutely and uniformly and its sum is a continuous and periodic function. 

The operator function G(t) defined by (14) is called ω - periodic Green’s function of (1) and it has the following 

properties: 

 G(t) is periodic:    tGtG  . 

 G(t) is strongly continuous with respect to t and has strong derivatives except for the values t = nω, n = 0, ±1, ... . 

Moreover         EGDGDGG tt  00,000  

 G(t) has a second strong derivative and satisfy the equation   02 tGLp  with the defect mentioned in 2. 
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    EsGDsGD tt  00  (property 2). 

We now prove property 3. For this we re-write the expression for G(t) in such a way that the series resulting after 

two differentiations is convergent. 
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From which we have 
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From the above expression, we have 
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That is, G(t) is the solution of the homogeneous equation except for the points mentioned in property 2. 

Using Green’s function, we prove the following theorem. 
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at any ω - periodic function f(t), integrable and with bounded variations (Zygmund, 2002) has a unique solution, 

where Akj are operators which domains belong to a Hilbert space X and their ranges to a Hilbert space Y, 

YX
YX ..,   and Akj : YY  are closed operators, Akj : YX  are bounded operators, f(t) is  - periodic 

function, hkj are constants, k = 0, 1, j = 0, …, m and h00 = h10 = 0,     .
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Proof 

The existence of the integral in (17) comes from the strong continuity of the integrand. Hence, rewriting 
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That is: 
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The uniqueness of solution results from the fact that in the theorem conditions the homogeneous equation cannot 

have nontrivial ω - periodic solutions. 

CONCLUSIONS 

We established a theorem concerning the uniqueness of the solution of the equation    tftuLp 2
 under some 

conditions on the operator 

.:
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A Green’s function is built first and used afterwards to prove the theorem. 
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